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Abstract. Evolving networks with a constant number of edges may be modelled using a rewiring process.
These models are used to describe many real-world processes including the evolution of cultural artifacts
such as family names, the evolution of gene variations, and the popularity of strategies in simple econo-
physics models such as the minority game. The model is closely related to Urn models used for glasses,
quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found
and its exact solution and generating solution are given.

PACS. 89.75.Hc Networks and genealogical trees – 89.75.Da Systems obeying scaling laws – 89.65.Ef
Social organizations; anthropology – 89.65.Gh Economics; econophysics, financial markets, business and
management

Networks with a constant number of edges that evolve only
through a rewiring of those edges are of great importance,
as exemplified by Watts and Strogatz [1]. Many different
applications may be modelled as a network rewiring: the
transmission of cultural artifacts such as pottery designs,
dog breed and baby name popularity [3–6], the distribu-
tion of family names in constant populations [7], the di-
versity of genes [8,9] and the popularity of minority game
strategies [10]. There is a close link to some models of the
zero range process [11] and the closely related Urn type-
models used for glasses [12,13], simplicial gravity [14] and
wealth distributions [15]. The rewiring of networks is also
studied in its own right [1,16,17].

However previous analytic results for network rewiring
models are based on incomplete mean field equations and
their approximate solutions. In this letter I give the full
equations for linear removal and attachment probabilities
with their exact solution. This means the analytic results
for rewiring models can match the status of those for ran-
dom graph and growing network models (e.g. see [2]).

Consider the degree distribution of the arti-
fact vertices1, n(k), in the bipartite graph of Figure 1. At
each time step I make two choices then alter the network.

a e-mail: T.Evans@ic.ac.uk
1 The artifacts may be a dog breed, baby name or pot-

tery style with each individual choosing one type of artifact
as indicated by its edge [3–6]. For family names the individ-
uals are those who inherit the name from their partner, the
edges are the partners who retain their family name while
the artifacts represent different family names. For a model
of gene distributions [8,9] in a haploid population, the arti-
facts are the alleles while the individuals are the organisms. A
diploid population may be modelled in a similar manner. In
Urn/Backgammon/Balls-in-Boxes models [12–15] the individ-
uals represent the balls while the artifacts are the boxes. The

First I choose one of the E individuals at random2,
aiming to rewire the artifact end of the chosen individual’s
one edge. Thus the edge to be rewired is from an artifact
chosen by ‘preferential removal’.

Second, this edge will be reattached to one of the N
artifact vertices chosen with probability ΠA. With prob-
ability pp preferential attachment is used to choose the
artifact. This is equivalent to choosing an individual at
random and copying the current artifact choice of that in-
dividual. Alternatively with probability pr an artifact is
chosen at random to receive the rewired edge. This corre-
sponds to innovation in the context of cultural transmis-
sion [3,5], in gene evolution it is mutation [8,9].

With only these types of event, pp+pr = 1, the number
of artifacts N is constant, and

ΠR =
k

E
, ΠA = pr

1
N

+ pp
k

E
, (0 ≤ k ≤ E). (1)

After these choices have been made the rewiring takes
place. The mean field equation for the degree distribution
for (0 ≤ k ≤ E) is therefore

n(k, t + 1) − n(k, t) =
n(k + 1, t)ΠR(k + 1) (1 − ΠA(k + 1))

− n(k, t)ΠR(k) (1 − ΠA(k)) − n(k, t)ΠA(k) (1 − ΠR(k))
+ n(k − 1, t)ΠA(k − 1) (1 − ΠR(k − 1)) . (2)

This equation holds at the boundaries k = 0 and k = E
provided n(k) = ΠR(k) = ΠA(k) = 0 for k = −1 and

rewiring of an undirected network is described by the same
equations provided E is replaced by 2E.

2 In this letter ‘random’ without further qualification indi-
cates that a uniform distribution is used to draw from the set
under discussion.
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Fig. 1. In the abstract form of the model, there are E vertices
of one type — ‘individual’ vertices. Each has one edge which
runs to one of N vertices of a second type — the ‘artifacts’. The
degree of the artifact vertices is k indicating that one artifact
has been chosen by k distinct individuals. The rewiring will be
of the artifact ends of the edges, so each individual always has
one edge.

k = (E + 1) are chosen. Note that by including the fac-
tors of (1 − ΠA) and (1 − ΠR) on the right hand side I
am explicitly excluding events where the same vertex is
chosen for removal and attachment in any one rewiring
event since such events do not change the distribution.
More importantly these terms ensure a rigid upper bound-
ary n(k > E, t) = 0. Contrast this with the equations
for growing networks (for instance in [2]) where there is
no rigid upper boundary in the long time limit and such
terms are absent . These additional factors are only signif-
icant for k ∼ E but they are missing in other discussions
of rewiring models. The condition E � k is usually suffi-
cient for these factors to be negligible and results match
the literature in this regime.

These equations (2) have a stationary solution if

n(k + 1)ΠR(k + 1) (1 − ΠA(k + 1)) =
n(k)ΠA(k) (1 − ΠR(k)) (3)

which gives the static solution n(k) for (E ≥ k ≥ 0) as

n(k) = A
Γ (k + ˜K)
Γ (k + 1)

Γ (E + ˜E − ˜K − k)
Γ (E + 1 − k)

, (4)

˜K :=
pr

pp
〈k〉, ˜E :=

pr

pp
E. (5)

The normalisation constant A can be found from (10) be-
low and 〈k〉 = E/N is the average artifact degree.

For k � 1, ˜K, the first ratio of Gamma functions gives

Γ (k + ˜K)
Γ (k + 1)

∝ k−γ

(

1 + O(
1
k

,
˜K

k
)

)

, (6)

where γ = 1 − ˜K ≤ 1. This is consistent with previous
results which are usually given in a small mutation, pr ≈ 0,
and/or low average degree 〈k〉 	 1 limit.

The novel aspects in the present formulation are the
extra factors of (1−ΠA) and (1−ΠR) in (2). These lead
directly to the second ratio of Gamma functions in (4)

which for prE � 1 decays exponentially:

Γ
(

E + ˜E − ˜K − k
)

Γ (E + 1 − k)
∝ exp{−ζk}

(

1 + O(
k

E
)
)

, (7)

where ζ = − ln (pp) + O(E−1).
However, when prE � 1 the numerator grows with k.

In fact at a critical random attachment probability, p∗r , the
total distribution stops decreasing at the upper boundary,
so n(E) = n(E − 1). This occurs at

p∗r =
E − 1

E2 + E(1 − 〈k〉) − 1 − 〈k〉 . (8)

Therefore when pr < p∗r ∼ 1/E the degree distribution
will increase near k = E.

Thus there are two types of behaviour. For large inno-
vation or mutation, for 1 > pr � E−1 the distribution is
approximately n(k) ∝ (k)−γ exp{−ζk}, a gamma distri-
bution, with an exact binomial distribution at pr = 1, the
random graph case of [1]. This gives a power law for small
degree, k � ln(p−1

p ), with an exponential cutoff for higher
degrees. Such behaviour is noted in the literature under
various approximations [6,5,8,9,16] and those results are
consistent the exact solution (4). However since 1 	 ζ
implies (γ − 1) 	 〈k〉, if one had only one data set of a
typical size, any power law section of reasonable length
(k � ζ−1) will have a power γ indistinguishable from the
value one (c.f. growing networks where γ > 2).

The second regime is where prE � 1, i.e. there is usu-
ally no mutation or innovation over a time period when
most edges have been rewired once. Here the tail of the
distribution rises and one artifact will be linked to almost
all of the individuals. It is the condensation of [13,15] and
fixation in [9] but again those results were given only for
the equivalent of large E. Similar behaviour has been dis-
cussed for growing networks, for example in [2], but not
as an explicit network rewiring problem.

In this simple model, there are no correlations be-
tween the degree of vertices. Indeed one need not impose
a network structure as in [8,9,13–15]. Thus the mean-field
equations should be an excellent approximation to the ac-
tual results. Numerical simulations confirm this as Fig-
ures 2 and 3 show.

Given this exact solution for the degree distribution,
its generating function

G(z) :=
E

∑

k=0

n(k)zk, (9)

may be obtained exactly in terms of the hypergeometric
function F (a, b; c; z):

G(z) = n(0)F ( ˜K,−E; 1 + ˜K − E − ˜E; z). (10)

The mth moments of the degree distribution are then

1
G(1)

dmG(z)
dzm

∣

∣

∣

∣

z=1

=
Γ ( ˜K + m)Γ (−E + m)Γ (1 − ˜E − m)

Γ ( ˜K)Γ (−E)Γ (1 − ˜E)
.

(11)
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Fig. 2. Plots of the degree probability distribution function
p(k) = n(k)/N and the fractional error shifted by ∆ of the
data w.r.t. the exact solution. For N = E = 100 and various
pr = (1−pp) = 0.1 (crosses, ∆ = 0), 0.01 (circles, ∆ = 1), 0.005
(stars, ∆ = 2) and 0.001 (squares, ∆ = 3), while lines are the
exact solutions. Measured after 105 rewiring events, averaged
over 104 runs. Started with n(k = 1) = E but otherwise n(k) =
0. The error bars are mostly smaller or similar in size to the
symbol in the first plot.

In particular the case m = 0 fixes the normalisation, A,
of n(k) in (4), while m = 1 confirms the results are com-
pletely consistent in the determination of 〈k〉.

There is another important attachment process that
may be included in this model. Suppose that with prob-
ability p̄ = 1 − pr − pp a new artifact vertex is added to
the network. The new artifact receives the edge removed
from an existing artifact on the same time step. The cul-
tural transmission models [3–6] and the gene pool model
studied in [8,9] include this process. In the long time limit
the number of artifacts becomes infinite, and the random
attachment then becomes completely equivalent to this
process of new artifact addition. This is the large N , zero
〈k〉 limit of the discussion above. Care is needed as n(0)
diverges and an alternative normalisation is needed. The
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Fig. 3. The degree probability distribution function p(k) =
n(k)/N and the fractional error shifted by ∆w.r.t. the exact
solution for N = E, Epr = 10.0 and pr = 10−2 (crosses, ∆ =
0), 10−3 (circles, ∆ = 1) and 10−4 (stars, ∆ = 2). Measured
after 107 rewiring events, averaged over 103 runs. Note that
for pr = 10−4 there are signs the model may not have quite
reached equilibrium. Started with n(k = 1) = E but otherwise
n(k) = 0.

degree distribution for k ≥ 1 behaves in exactly the same
way as before, a simple inverse degree power law cutoff by
an exponential for E(1 − pp) � 1 but for E(1 − pp) � 1 a
single artifact is chosen by most individuals. Intriguingly
for this model when E(1 − pp) = pp the degree distri-
bution an exact inverse power law for the whole range
of non-zero degrees. The exact solution to the mean field
equations again provides an excellent fit to the data as
Figure 4 shows.

These results have several implications. First I have
noted that many apparently different models are all equiv-
alent to this simple bipartite network model. Then in
terms of mathematical detail, previous mean field equa-
tions did not include the (1−Π) terms of (2). Thus exact
solutions given here are novel. The various forms for the
asymptotic behaviour found in the literature can now be
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Fig. 4. Plots of the degree distribution, normalised by the sum
of values for degree greater than zero, and the fractional error
of the data w.r.t. the exact solution. For each parameter set
plots shifted by a constant controlled by ∆ for clarity. For E =
100 but with new artifacts added with probability p̄ = 1 − pp

(pr = 0) where p̄ = 0.1 (crosses, ∆ = 0), 0.01 (circles, ∆ = 1),
0.005 (squares, ∆ = 2) and 0.001 (stars, ∆ = 3). The lines are
the relevant equivalent mean field solutions. Measured after
105 rewiring events, and averaged over 104 runs. Started with
n(k = 1) = E but otherwise n(k) = 0. Errors on the degree
distribution are not shown.

seen to be various small pr and/or large E approximations
to the exact results, e.g. descriptions elsewhere of the con-
densation regime prE 	 1 are for large E. Further the cal-
culation of the generating function shows that all aspects
of this model appear to be analytically tractable so this
rewiring model may prove to be as useful the Erdős-Réyni
random graph.

As noted in the introduction, the model also has a wide
range of practical applications [3–6,8,9,12,14,15]. While
it may be too simple in practice, it does at worst give a
useful null model against which to test other hypotheses.

However copying the choice of others could also be
a genuine strategy, even if it emerges as the result of a

more fundamental process. Suppose that the individuals
are connected to each other by a second network. When
making the choice of artifact for attachment, the individ-
ual which is rewiring its edge could consult its acquain-
tances as represented by this network, and may well choose
to follow their recommendation, i.e. copy their artifact.
Such random walks on a network, even when of length
one, lead naturally to the emergence of preferential at-
tachment in most cases, [18]. This explains results in a
model of the Minority Game [10]. There individuals are
connected by a random graph and choose a strategy (the
artifact) by copying the ‘best’ of their neighbours. If what
is best is continually changing then for the degree distri-
bution this will be statistically equivalent to copying the
strategy of a random individual. It is no surprise then that
the results for the popularity of strategies in [10] follows
a simple inverse power law with a large degree cutoff.

Finally one may consider the scaling properties of the
model. In examples such as pottery styles or dog breeds,
the categories assigned by investigators are a coarse grain-
ing imposed on a collection where each individual is really
unique at some level. However one would hope that the
results are largely independent of this categorisation. So
suppose the artifacts are paired off at random. The deci-
sion to copy or to innovate on a given event do not change,
so pr, pp and p̄ remain the same. Because preferential at-
tachment is linear in degree, the probability of preferen-
tially attaching to a given pair of artifact vertices is just
proportional to the sum of their degrees which in turn is
just the degree of the artifact pair vertex. Thus we retain
preferential attachment. The probability of choosing one
of a pair of artifacts at random is double choosing just
one at random but this reflects that the number of ar-
tifact pairs N2 = N/2 is just half the original number of
artifact vertices. Overall, the form of the equations for the
degree distribution of these pairs, n2(k), is exactly as be-
fore and the only parameters which change are N → N/2
and 〈k〉 → 〈k〉/2. Thus the generic form of the distribution
of artifact choice is independent of how artifacts are clas-
sified though the detailed prescription changes in a simple
manner.

I thank D. Brody, H. Morgan, A.D.K. Plato and W. Swanell
for useful conversations.
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